Energy Efficiency in Supermarkets

Hugh I. Henderson, Jr. P.E.
CDH Energy Corp.
Cazenovia, NY
Overview

- Supermarkets are Unique
 - high energy use, unique systems, etc
- Using Simulations to Predict Savings
 - examples using SST
 - what’s coming in the future (E+)
- Examples of Promising Improvements
 - floating head pressure, mechanical subcooling
 - Heat recovery, suction pressure reset
CDH Supermarket Experience

- Research Projects Evaluating Energy Efficiency
 - Combined heat and power (subcooling, heat recovery)
 - Dehumidification (desiccants, mechanical, etc)
 - Advanced refrigeration system concepts (defrost, controls)

- Developed Computer Simulation Tool (SST) to Predict Annual Energy Impacts
 - Developed for EPRI
 - Models Refrig/HVAC/Building interactions
 - Verified model with data from several supermarkets
 - Used SST to accurately predict energy and cost savings
Commercial Buildings are Not All the Same

End-Use or On-Site Energy Use

Commercial Buildings - 1995 CBECs

Energy Intensity (MBtu/ft²)

- Office
- Mercantile and Service
- Education
- Health Care
- Food Service
- Warehouse and Storage
- Food Sales
- Public Order and Safety

- Other
- Lighting
- Water Heating
- Space Cooling
- Space Heating
Energy Cost By Building Type

Commercial Buildings - 2003

$1.80/sq ft for all Commercial
Supermarket Benchmarking

• Have Worked with Supermarket Chains to Analyze and “Rank” Fleet of Stores
 – Identify problems and opportunities
 – Provides high level view of where efforts should be focused
 – Provides a basis for normal operation
CHP in Supermarkets

- Supermarkets have consistent electric loads
- Significant heat loads due to case credits
- CHP can also meet other thermal loads:
 - Preheating air for gas-fired desiccant (Waldbaums, NY)
 - Absorption chiller for liquid subcooling (TX)
 - Fuel Cells with Abs. Chillers
Supermarket Simulation Tool - SST

• A Windows-based hourly building simulation model that simulates modern supermarkets:
 – building envelope and internal loads
 – refrigeration systems
 – HVAC systems
 – water loop
• “Icon-based” software application
SST Analysis Example: “Floating” Head Pressure

Minimum Condensing Temperature

Annual Refrigeration Energy (MWh)

Minneapolis
Atlanta
Oklahoma City

16C Med / 4C Low
16C Med / 10C Low
16C
21C
27C
32C
Subcooling with Chilled Water

Chilled water provided by Absorption Chiller
Benefit of Liquid Subcooling

Displaces 10-30% of refrigeration load from low-temp compressors
Mechanical Subcooling

Evaporator

Subcooler

Expansion Valve

Receiver

Condenser

Head Pressure Control

Medium Temp. Compressor

Low Temp. Compressor

Evaporator

Subcooler

Expansion Valve

Receiver

Condenser

Head Pressure Control